98 research outputs found

    Ultra-stable implanted 83Rb/83mKr electron sources for the energy scale monitoring in the KATRIN experiment

    Full text link
    The KATRIN experiment aims at the direct model-independent determination of the average electron neutrino mass via the measurement of the endpoint region of the tritium beta decay spectrum. The electron spectrometer of the MAC-E filter type is used, requiring very high stability of the electric filtering potential. This work proves the feasibility of implanted 83Rb/83mKr calibration electron sources which will be utilised in the additional monitor spectrometer sharing the high voltage with the main spectrometer of KATRIN. The source employs conversion electrons of 83mKr which is continuously generated by 83Rb. The K-32 conversion line (kinetic energy of 17.8 keV, natural line width of 2.7 eV) is shown to fulfill the KATRIN requirement of the relative energy stability of +/-1.6 ppm/month. The sources will serve as a standard tool for continuous monitoring of KATRIN's energy scale stability with sub-ppm precision. They may also be used in other applications where the precise conversion lines can be separated from the low energy spectrum caused by the electron inelastic scattering in the substrate.Comment: 30 pages, 10 figures, 1 table, minor revision of the preprint, accepted by JINST on 5.2.201

    The first experimental evidence for the (M1+E2) mixed character of the 9.2 keV transition in Th-227

    Get PDF
    The 9.2 keV nuclear transition in Th-227 was studied in the beta(-)-decay of Ac-227 by means of the internal conversion electron spectroscopy to clarify the spin-parity assignment of the ground state and the two lowest excited states of Th-227. The transition multipolarity was proved to be of mixed character M1+ E2 and the spectroscopic admixture parameter delta(2)(E2/M1) = 0.695 +/- 0.248(vertical bar delta(E2/M1)vertical bar = 0.834 +/- 0.149) was determined. Nonzero value of delta(E2/M1) questioned the present theoretical interpretation of low-lying levels of Th-227. Calculations performed prefer the 1/2(+), 3/2(+), and 3/2(+) sequence instead of the adopted 1/2(+), 5/2(+) and 3/2(+) one for the 0.0, 9.2, and 24.3keV levels, respectively.Web of Science820art. no. 13659
    corecore